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Abstract - A mathematical model is presented for predicting the turbulent and optical characteristics of 
supersonic boundary layers interacting with sub- and supersonic cooling wall jets. The injectant and 
boundary layers are of matched or unmatched pressures. In addition to the mean and fluctuating properties 
of the flowfield, fluctuations of the medium index of refraction and retardation of optical beams propagating 

through the medium are predicted. Comparisons with experimental data show good agreement. 

NOMENCLATURE 

CP specific heat at constant pressure; 

cl, c2, cT,, CT29 Cl, c,, constants in the turbulence 
model ; 

H, total enthalpy; 

k, kinetic energy of turbulence = $ uiul ; 
1, length scale ; 
M, molecular weight ; 

n, exponent, index of refraction; 
- 
6 1 -n; 

P, static pressure; 

r, radial distance; 
R, R,, specific and universal gas constants; 

4 time ; 
‘I: temperature; 

U, streamwise velocity component ; 

0, lateral velocity component; 

x, streamwise coordinate; 

Y, lateral distance. 

Greek symbols 

E, dissipation rate of k; 

P(t viscosity; 
3 3 wavelength ; 
P, density ; 
on, uT, cK, u,, turbulent Prandtl/Schmidt numbers; 

4, phase variation of optical beam; 
w, dimensionless stream function. 

Subscripts 

e& effective; 

J? jet ; 
max, maximum ; 
min, minimum ; 
s, splitter plate; 
4 turbulent. 

* Sponsored by Ballistic Missile Defense Advanced Tech. 
nology Center under contract No. DASG60-78-C-0152. 

Superscripts 
- 

, time-averaged value; 
, 

r,, 
fluctuating component ; 
maximum instantaneous value; 

-9 minimum instantaneous value. 

1. INTRODUCTION 

ADVANCED hypersonic flight vehicles which utilize 

window concepts protecting an optical or radar gui- 
dance sensor are being investigated. In order to 
provide cooling for optical windows, gaseous coolants 
are being considered where cold gas is injected through 
a wall slot tangentially into the vehicle boundary layer. 

Sensor performance evaluation requires the under- 
standing of the characteristics of the vehicle’s hot 
hypersonic boundary layer over the window and its 
interaction with the cold wall jet. The optical designer 
requires detailed information on the flowfield mean 
and fluctuating properties and the thermodynamic 
state throughout the injectant, shear and boundary 
layers. The optical properties of the layers and, hence, 
the sensor’s optical performance can then be 
evaluated. 

The purpose of this paper is to present a model for 
predicting the flowfield characteristics over optical 
windows. The flow is considered turbulent, and the 
turbulence structure is represented by rate equations 
governing the kinetic energy of turbulence and its 
dissipation rate. The mixing streams can be subsonic 
or supersonic and of matched or unmatched pressures 
(lateral variations in the pressure distribution can exist 
due to imbedded shock waves). A conservation equa- 
tion representing the mean square of the temperature 
fluctuation is included in the model, which allowed the 
calculation of the fluctuation of the index of refraction 
and refraction of optical beams. The instantaneous 
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temperature, index of refraction and beam phase 
variation were extracted from an assumed shape of the 
probability distribution function of the temperature 
fluctuation. In the present analysis the instantaneous 
temperature was assumed to fluctuate between a 
minimum and a maximum and spends no time in 
between. 

The governing flowfield conservation equations 
were solved using a finite difference-marching pro- 
cedure. The Semi-Implicit Method for Pressure- 
Linked Equations technique was utilized in the present 
study. 

2. MATHEMATICAL ANALYSIS 

The mathematical analysis presented here is based 
on two main elements : 

(i) The solution of the transport equations of heat, 
mass and momentum in the turbulent compres- 
sible flow fields under consideration. These 
equations are listed in Section 2.1, and the 
solution method is described in Section 2.3. 

(ii) The mathematical model which describes the 
interaction between the local turbulence quan- 
tities like temperature fluctuation and the re- 
fraction of an optical beam. This is discussed in 
Section 2.2. 

2.1. Equations of heat, mass and momentum transport 
The flows considered in the present study are steady, 

turbulent and two-dimensional plane or axisymmetric. 
The independent variables are the distances along, and 
perpendicular to, the pr~ominant direction of flow. 
The dependent variables of the time-mean motion are 
the streamwise velocity, u; the lateral velocity, 1’; the 
static pressure, p; and the stagnation enthalpy, H. The 
conservation equations which govern the mean mo- 
tion are: 

Streamwise momentum : 

pU&+= ap ia au 
-ax+- 

r” ap P,fC ‘“;ir . (2) ! J 
Lateral momentum (neglecting viscous terms): 

al> ac ap 
pu=-p?vg=-,. (3) 

Stagnation enthalpy : 

The temperature and density are given by the 

relations : 

T= [H - f(U’ + 2) - kjj?‘, is i 

p = P,lRT= RM!‘R,T {hi 

where compressibility effects are accounted for via 
both P and 7: In the above equations, tz = 0 for two- 
dimensional flow and n = 1 for axisymmetric flow. 

The eddy viscosity pCfft which appears in the above 
set of equations is obtained from : 

Pelf = & + Piam (7, 

The turbulent viscosity at each point in the flow is 
obtained from : 

The kinetic energy of turbulent k and its dissipation 
rate E are calculated from their respective conservation 
equations, [l] : 

- jt: 

The length scale of turbulence is related to k and I: by : 

The boundary conditions of the above conservation 
equations are discussed for each of the flows con- 
sidered in Section 3. 

2.2. A rnathe~iatjca~ model for the eflecr of fowi 
temperature,~uctuation on f he prf~pug~tion ofan optical 
beam 

An optical beam experiences a phase variation 
(retardation) as it propagates through a medium of 
nonuniform density. In a turbulent flowfield which 
experiences local density ~u~tuation (due to the local 
temporal fluctuation of the temperature, pressure or 
species concentration), the local index of refraction of 
the fluid consequently varies with time. 

The present mathematical model predicts the fluc- 
tuation of the refractive index by relating the in- 
stantaneous vaiue of that index to the instantaneous 
value of the temperature. This is accomplished as 
follows : 

(i) The local mean square temperature fluctuation 

(F) is obtained from the solution of its conservation 
equation [Z]. 
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FIG. 1. Temperature-time rectangular wave. 

(12) 

where CT1 and CT2 are empirical constants and or is 

the Prandtl number of T’i. 
(ii) The instantaneous temperature is assumed to 

follow a rectangular wave with time. This means that 
the probability density function of the temperature 
consists of only two delta functions. In general, the 
magnitudes of these functions are not equal. To allow 
for the physical realism to be incorporated in this 
assumption the following bounds on T(t) are in- 
troduced to insure that T(t) never exceeds T,,, or 
drops below Tmi, (as depicted in Fig. 1). 

Cuse A (Fig. la) 

(T,,, - T)>JT2 and (T- Tmin) > ,/ Y2 

(134 

a = 0.5 (13b) 

T+ = T+ ,/ T”, T- = F- ,\/T,2, ;!3c) . 

9(t) = j [W - 11 ds, (18) 
where s is the optical path and (2n/%) is the wavenum- 
. . 

~ I ber m vacuum. 

Case B (Fig. lb) 

JT” > (T- Tmin) 

T- = T,,,i, 

T+ = F+ T’z/(?‘- T-) 

a = (T- T-)/(T+ - T-). 

Case C Fig. lc) 

,/T’2 > (T,,, - T) 

T+ = T,,,,, 

(14a) 

(14b) 

(lk) 

(144 

(154 

(15b) 

T’2 

T- = i-- (T+ _ T) (15c) 

a=l- 
(T+ - T) 

(T+ - T-)’ (15d) 

The value of a at each point in the flow is determined 
from one of the equations (13b), (14d) and (15d) 
depending on the magnitude of the temperature 
fluctuation given by equations (13a), (14a) and (15a). 

In all these three cases the time mean density p is 
calculated from : 

j?=ap+ +(I -a)p=g [i-$+$.9], 

(164 

and the mean-square of the density fluctuation is given 

by 

p”=(p+ -&Y--p-). (lob) 

More realistic probability density functions 
can be readily incorporated into the above model 
when detailed experimental data for the tempera- 
ture fluctuation in turbulent shear flows become 
available. 

(iii) The instantaneous values of the refractive index, 
n, is calculated from the empirical relation [3] : 

n(i)=l+~[l+~]xlO-~ (17) 

where p is the pressure in mb, ), is the wavelength in pm 
and T is the instantaneous temperature in K. Equation 
(17) shows that n is inversely proportional to T. It then 
follows that the maximum value of n,n+, will cor- 
respond to the minimum value of ?: T-, and vice 
versa. The quantity ?i is obtained from ti = ant + 
(1 - a)n_. 

A quantity ofpractical interest is the phase variation 
of an optical beam which propagates through a 
gaseous medium of variable (in space and time) index 
of refraction n. The instantaneous phase variation 
&(t)[27r/L] can be calculated from the optical path 
length 4(t) as follows [4] : 
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According to equation (18), the maximum instan- 
taneous value # + is proportional to n+, and the 
minimum value 4- is proportional to n-. The time- 
mean value of the phase variation (b is obtained from : 

CfJ = $(ti) (19) 

The root-mean-square value of 4 is given by 
- 

Jf2 =J[(#’ - (b)($ - #-33. (20) 

2.3. The solution procedure 
A finite difference procedure of the marching (from 

upstream to downstream) integration type is used to 
solve the set ofconservation equations (l)-(4), (9), (IO) 
and (12). This procedure is described in detail in [_5] 
and will be only briefly outlined in this section. The 
governing set of differential equations is first transfor- 
med into a stream function plane (x,0) using a Van 
Mieses type transformation. The finite difference grid 
adopted is similar to that of [5]. 

The SIMPLE (Semi-Implicit Method for Pressure- 
Linked Equations) algorithm [5] is used to link the 
streamwise and lateral momentum equations with the 
continuity equation so as to obtain a pressure field. 
This linkage is necessary in supersonic or transonic 
flows where the assumption of uniform pressure in the 
lateral direction is invalid. 

3. RESULTS AND DISCUSSION 

This section presents the predicted results and 
compares them, whenever possible, with existing expe- 
rimental data or results of other numerical procedures. 
Four flows are considered here. These are: 

(i) An axisymmetric underexpanded jet issuing in 
a confined supersonic flow ; 

(ii)Unmatched-pressure supersonic injection from 
a 2-D wall-slot into a supersonic free stream; 

(iii)Matched-pressure supersonic injection from a 2- 
D wall-sIot into a supersonic free stream; 

(iv)Matched-pressure subsonic injection from a 2-D 
wall-slot into a supersonic free stream. 

The third and fourth flows provide the only avail- 

able experimental data to validate the predictions of 
the phase variation of an optical beam. Testing was 
performed at AF-FDL Mach-3 wind tunnel f6], where 
both optical (holographic interferometry) and probe 
(hot wire anemometry and Pitot and static pressure 
probes) measurements were obtained. 

3.1. &o~~put~tio~~ details 
The conservation equations contain empirical con- 

stants to which values must be assigned. The values of 
these constants were inferred by comparisons with 
experimental data of simple flow configurations [7]. 
Presented in Table 1 are the values of these constants 
used in the computations. The finite-difference grid 
employed in the present computation consists of 50 
ceils in the y-direction at any given streamwise station. 

Table 1. Values of empirical constants 

Value 

0.9 
1 si 
i .O’) 
1.43 
1.92 

0.7 

‘.R 

1.4 

0.09 
0.164 

The optimum size of the forward step is determined by 
the solution procedure at each new step to eliminate 
any numerical instabihty and to ensure economy. The 
computations were performed on a CDC-7600. 
The core storage required during execution is 103 K 
(octal) and the CPU time for one step is 0.006 s. 

3.2.1. Flow description. The flow configuration is 
shown in Fig. 2, and the conditions at the exit plane are 
summarized in Table 2. 

FIG. 2. Configuration of the two coaxial supersonic jets. 
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Table 2. Flow conditions at the exit plane of confined axisymmetric jet and 2-D wall jet 

Fluid 
u (m s-r) 
v (m s-t) 
M 
p (lOfNm-*) 
r, Y (W 
T(K) 

Axisymmetric confined jet 

Stream A Stream B 
- 

Air Air 
1330.0 2625.0 

0.0 0.0 
2.0 3.38 
1.0 0.5 
0.001 0.00376 

1100.0 1500.0 

2-D wall jet 

Stream A Stream B 
-- 

Air Air 
490.7 691.0 

0.0 0.0 
1.98 4.19 
2.5 1.0 
0.0135 0.01986 

180.6 79.96 

This flow was predicted by Kurkov [8], using a finite 
difference procedure. Ne treated the Aow as inviscid 
and the stream B fluid was hydrogen. In this case the 
fluid is air and the flow is treated as laminar ; otherwise, 
the inlet conditions are identical to that of Kurkov. 

3.2.2. Boundary conditions. The present marching- 
integration procedure requires the specification of the 
boundary conditions along the axis and the confining 
wall. The gradients in the r-direction of all the 
dependent variables vanish at the axis. At the wall, the 
no-slip condition is enforced. 

3.2.3. Results. Figure 3 shows the predicted pressure 
distribution along the axis of symmetry, together with 
that calculated by Kurkov [S]. The main features are 
well predicted: the locations of the expansion wave (at 
x/rJ N 3) and the reflection of the shock (at x/rj N 18). 
The predicted value of the maximum pressures are in 
very good agreement. The value of the minimum 
pressure at x/rj = 3 is overpredicted by approximately 
67 %. The grid used here includes 50 cells in the radial 
direction. A finer grid would probably improve the 
predictions at the pressure dip. In addition, plug 
profiles were assumed for both streams at the inlet 
plane. 

3.3. Unhatched-press~e, turbulent, supersonic injection 
from a 2-D ~a~~-slo~ into a su~ersonic~ree stream 

3.3.1. Flow description. Figure 4 shows a schematic 
of the flow considered, and Table 2 summarizes the 
conditions at the exit plane of the slot. A supersonic 
wall jet issues into a lower pressure, faster moving 
stream. The conditions of this flow are those of the 
experiment of Schetz et al. [9]. 

FREE STREAM B 

FIG. 3. Pressure distribution along the centerline of the 
coaxial jets. 

3.3.2. Boundary co~it~o~s. Near the wall, turbulent 
wall functions [lo] are used to calculate the shear 
stress, the kinetic energy of turbulence and its dissi- 
pation rate. At the edge of the supersonic free stream 
(i.e. at the last finite-difference cell in the free stream) 
the assumption of the simple wave is employed [5] to 
calculate u, v, p there. 

3.3.3. Results. Figure 5 displays a comparison be- 
tween the predicted and measured [9] pressure distri- 
bution along the wall. The agreement is good except 
that the trough of the pressure is about 20% higher 
than the measured one. This is the location of the 
interaction of the expansion wave with the wall. 

JET STREAM A 

WALL 

FIG. 4. Wall-slot jet injected into free stream. 
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FIG. 5. Pressure distribution along the wall 

It should be noted that the present predicted 
pressure distribution is in better agreement with the 
data than those of fll]. This is due to the prescribed 
profiles used here of U, p, 7: p at the exit of the slot 
which take an account of the boundary layers on both 
the slot walls and the splitter plate. Reference [ll] 
assumed plug profiles. In the present study 1/7th 
power law profiles were used. 

3.4. Matched-pressure supersonic injection from a 2-D 
w/f-sfot into a supersonic free sEream 

3.4.1. Flow ~s~i~tio~. The flow con~~uration of this 
case is identical to that of the unmatched-pressure case 
[Fig. 4). The conditions at the exit plane of the slot are 
given in Table 3. The blowing rate is about 
0.775 kg m- ’ s _ *. The slot height ~1~ is 0.0064 m. The 
wall temperature is 274 K. 

3.4.2. ~oundur~ conditions. The boundary con- 
ditions here are the same as in the unmatched pressure 
case (Section 3.3). 

3.4.3. Results. Figures 6 to 1 I show a comparison 
between the predicted and measured flow properties at 
the streamwise stations of xjy, = 4.33,8.03 which will 
be referred to hereafter as Stations I and II, 
respectively. 

3.4.4. Time-mean velocity. The profiles of the 
time-mean velocity are displayed in Fig. 6. The 
predictions and measurements are in good agreement 
at the two stations. The growth of the shear layer, 
indicated by the vanishing of the dip in the velocity 
profile at y/v, = 1.1, is well predicted. The velocity in 
the inner region (JJ/~, c 0.9) is overpredicted by about 
6 7;; this discrepancy is within the limits of the 
experimental accuracy. 

3.4.5. Mach number. Figure 7 shows the distributions 

Table 3. Conditions at the exit plane of the slot for the supersonic and subsonic 
injection cases 

__..-._. 
Supersonic injection Subsonic injection 

Stream A Stream B Stream A Stream B 
_. ~~_._.___ ._~_~. 

Fluid Air Air Air Air 
u (m s-‘f 455.0 570.0 202.0 470.0 
c (m s-l) 0.0 0.0 0.0 0.0 
M 1.66 2.79 0.622 2.19 
p(105Nm-2) 0.145 0.145 0.145 0.145 
‘I- (K) 180.0 100.0 251.0 100.0 

I , I 
t I 

.25 .75 !. I.25 ! 5 
5l~ENS~ONLESS CROSS STREM DISTANCE, j/y, 

FIG. 6. Lateral distribution of streamwise time-mean velocity 
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SUPERSONIC INJECTION 

EXPT. PREDICTIONS X/Y5 

A- 4.33 

>-- 0 --- 8.03 

.5-- 

0-r I I I I 
I I I 1 

.25 .5 .75 1. 1.25 1.5 

DIMENSIONLESS CROSS STREAM DISTANCE, y/y5 

FIG. 7. Lateral distribution of streamwise time-mean Mach number. 
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of the Mach number in the radial direction at the two 
stations. The agreement is good between the pre- 
dictions and experiment in the shear layer and in the 
outer flow. Again, the Mach number is overpredicted 
by about 6% in the inner region. 

3.4.6. Time-mean temperature. Figure 8 depicts the 
two profiles of the time-mean temperature. In contrast 
with the velocity profiles, the temperature profiles are 
well-predicted in the inner region (up to y/y, = 0.9). In 
the outer region, a discrepancy of about 10% exists 
between the measurements and the predictions. This 

underprediction of the temperature may be caused by 
the high value of the constant turbulent Prandtl 
number used (err, = 0.9) in the solution procedure. 
Both the predictions and experiment show a slight 
increase in temperature with downstream distance for 
y/y, > 1.25. 

3.4.7. Time-mean density. Figure 9 shows the pro- 
files of the time-mean density. The agreement between 
the predictions and measurement at the station of x/y, 
= 8.02 is good and is fair for Station I. The underpre- 
dieted density at that station in the outer region 

SUPERSONIC INJECTION 

X/Y5 EXPT. PREDICTIONS 

4.33 z?Jw 

.25 .5 .75 1. 1.25 1.5 

DIMENSIONLESS CROSS STREAM DISTANCE, y/y, 

FIG. 8. Lateral distribution of time-mean temperature. 

H.M.T. 2319~E 
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FIG. 9. Lateral distribution of mean density. 

(Y/Y, > 1) suggests inaccuracies in the experimental 
measurements. This is because the temperature was 
underpredicted in that region (Fig. 8) and, con- 
sequently, the equation of state for a constant pressure 
should overestimate the predicted density. (In other 
words, we cannot underpredict both T and p.) No 
measurements of the density are available for the inner 
region. Both the predictions and experiment show a 
slight drop in density with downstream distance for 
y/y, > 1.25. 

3.4.9. Time-mean index of refraction (ii). Figure 11 
shows a comparison between the optically measured 
and predicted profiles of the index of refraction n’ 
where, ri = n - 1. As indicated by equation (17), n(t) is 
inversely proportional to T(t) and, consequently, the 
accuracy of the prediction of ii depends on how well T 

and T” are predicted. As indicated in Fig. 11 the 
agreement between the prediction and experiment is 
good. 

3.4.8. The density ,f/uctuation. The profiles of the 
density fluctuation are plotted in Fig. 10. Qualitatively, 
the predictions and the measurements exhibit, as 
expected, a peak in density fluctuations at the location 

(Y/Y, 5 1.25) of maximum density gradient (Fig. 9). 
The predictions are in better agreement with the hot- 
wire measurements at Station II than at Station I. 
However, the data obtained from the optical measure- 
ments agree better with the predictions. 

3.4.10. The optical beam phase variation (4). Equa- 
tions (18) and (19) were used to predict $+, 4- and (6. 
Table 4 contains the predicted values at the two 
Stations I and II, together with the experimental values 

of,,’ p”/I, where i. is the wavelength (il = 0.69 pm). It is 
seen that the time-mean value and the fluctuation of 
the phase retardation increase with distance from the 
slot exit. This is mainly due to the higher density (or 
temperature) fluctuations at the downstream station. 
Also, the predictions and experiment are in good 

. . 

FIG 10. Lateral distribution of density fluctuation 
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I SUPERSONIC INJECTION 

LZJ- 
DhTA PREDiCTIONS es 

rl- 4.33 

"0 
;10-- 

0 _-- 8.03 

)1? 
.25 .5 .75 1. 1.25 1.5 

DIMENSIONLESS CROSS STREAM DISTANCE, y/yp 

FIG. 1 I. Lateral distribution of mean index of refraction (optical data). 

Table 4. Comparison between predictions and data of beam phase variation for supersonic and subsonic injection 
cases 

Case Station NY, 10’ x 4’ 10’ x (b- 10’ x 4 Exp. 

Supersonic I 4.33 6.67 6.26 6.46 0.02 
Supersonic II 8.03 6.79 6.22 6.51 0.043 
Subsonic I 4.33 5.05 4.56 4.81 0.094 
Subsonic II 8.03 5.17 4.35 4.76 0.039 

Pred. 
(equation 17) 

0.03 
0.041 
0.053 
0.059 

agreement, especially at Station II, which is due to 
better agreement between predictions and measure- 

ments for the quantities g and &? 

3.5. ~~~c~~ pressure subsonic i~jection~rom a 2-D wall 
slot into a supersonic stream 

3.5.1. Flow description. The flow configuration is 
identical to that of the supersonic injection case (Fig. 
4). The conditions at the exit plane of the slot are given 
in Table 3. The blowing rate for this case is 
0.247 kgm-’ s-r. 

3.5.2. Boundary conditions. The boundary con- 
ditions for this case are the same as in the unmatched 
pressure case (Section 3.3). 

3.5.3. Results. The predicted results at the two 
streamwise station$?(x/ya = 4.33,8.03) are presented in 
Figs. 12 to 16. The ex~~mental data are plotted in 
Figs. 14-16. Because of the unavailability of hot wire 
and pressure probes experimental data, the predictions 
will be only qualitatively discussed, except for the 
density and the refractive index which were obtained 
from optical measurements. 

3.54. Tic-mean vel~iry. Figure 12 shows the 
profiles of the time-mean velocity at the two stations. 
The growth of the shear layer is indicated by the 

decreasing velocity gradient. It is seen that the width of 
the shear layer at x/y, = 8.03 is almost three times the 
width of the shear layer in the supersonic injection case 
(Fig. 6). 

3.55. The time-mean temperature. Figure 13 dis- 
plays the predicted profiles of the time-mean tempera- 
ture at the two stations. It is interesting to compare the 
rate of temperature change with streamwise distance in 
the shear layer in the supersonic and subsonic injection 
cases. Figures 8 and 13 show that in the former case the 
temperature almost remains constant between the two 
stations, whereas in the latter case a drop of about 7% 
is observed for 0.6 < y/y, < 1.25. This is attributed to 
the faster rate of growth of the shear layer in the 
subsonic case (Fig. 12), which is caused by the 
turbulent mixing. A larger rate of turbulent mixing 
would increase the rate of entrapment of the free 
stream fluid into the shear layer and, thereby, enhances 
the rate oftemperature drop in that region and hence a 
rise in density. 

In the wall region, however, the supersonic injection 
produces larger temperature and velocity gradients 
than in the subsonic injection case. Consequently, the 
turbulent boundary layer grows faster in the former 
than in the latter case. Hence, the temperature rise in 
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I I 1 I I I 
I , I I 

L’ ’ 7 7 i I 25 1 

DIMFNSIONLESS CROSS STREAM "[STANCE, y,ys 

FIG 12. Lateral distribution of streamwise mean velocity. 

the wail region (between the two stations) is more in 

the supersonic case than in the subsonic case. 
3.5.6. The time-mean density and density,fiuctuation. 

Figures 14 and 15 show the profiles of the density and 
its fluctuation intensity. The predicted density be- 
havior is consistent with the predicted temperature 
(Fig. 13); a drop of the temperature with downstream 
distance in a uniform pressure field causes a density 
rise particularly away from the wall. The experimental 
data, however, shows a drop in density (i.e. a rise in 
temperature) with streamwise distance for y/y, > 1.0. 
This trend contradicts the predictions. This may be 
due to the large value of rrH (0.9) used in the 

Figure 15 shows a significant increase in the pre- 
dicted density fluctuations with streamwise distance. 
This is due to an order of magnitude increase in the 
effective viscosity in the shear layer. Although there is a 
fair agreement between predictions and experiment at 
Station I, there are insufficient experimental data 
points to justify a meaningful comparison. The expe- 
rimental data, however, exhibits a decrease in density 
and a decay of its fluctuation intensity with distance. A 
plausible cause of this discrepancy is that the pre- 
scribed profiles of the flow properties at the exit plane 
of the slot are not consistent with the actual flow 
conditions. To resolve this issue, more detailed expe- 

computation. rimental data are required. 

l- 

3.0 

\JdSONlC 1NJtLT:Oh 

'ktU1CTIONS "'> \ 

I I I 

I I I I 1 

.21 c .75 i.25 ! s 

DIMENSIONLESS CROSS STREAM OISTANCE. y/y5 

FIG. 13. Lateral distribution of mean temperature. 
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FIG. 14. Lateral distribution of mean density (optical data). 

3.5.7. The time-mean index of refraction. Figure 16 
displays the profiles of the time-mean index of re- 
fraction at the two stations. Since the index of re- 
fraction is a function of the local density, the discrep- 
ancy (explained earlier) between the measured and 
predicted density is reflected here again in thedisagree- 
meat between the measured and predicted index of 
refraction. 

predictions show an increase. 

4. SUMMARY AND CONCLUSIONS 

1. This manu~ript has described a numerical me- 
thod for predicting two-dimensional viscous compres- 
sible turbulent flows with values of Mach numbers 
ranging from 0.62 to 4.19. 

3.5.8. TheJluctuation in the phase uuriation. Table 4 

contains the predicted and measured vaIues of ,/ cp”/A 
and of the predicted #+, #-, and 4 (3, = 0.69.um). 
Since the phase variation 4 is a function of n, the 
discrepancy discussed earlier appears here also: the 

data indicate a drop in the value J(alz, and the 

2. A mathematical model is provided for calculating 
the influence of the turbulent heat transfer in boundary 
or shear layers on the propagation of optical beams 
across these layers. 

3. Good agreement is achieved between the pre- 
dictions and the available experimental data except for 
the subsonic injection case where the agreement is fair. 

DIMEWONLESS CROSS STREAM DISTANCE, y,y, 

FIG. 15. Lateral distribution of density fluctuation (optical data). 

SU3SONIC INJECTION 
QY, EXPT. PREDICTION 

4. 33 A - 
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Frc;. 16. Lateral distribution of index of refraction (optical data). 

4. Detailed experimental data at various flow con- 

ditions are needed (different pressure ratios) to extend 

the validity of the procedure. 

4. 
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LES EFFETS DU TRANSFERT THERMIQUE TURBULENT SUR LA 
PROPAGATION D’UN RAYON OPTIQUE A TRAVERS DES COUCHES 

LIMITES SUPERSONIQUES 

R&sum& Un modkle mathtmatique est prbsentt pour prbdire les caractiristiques turbulentes et optiques des 
couches limites supecsoniques en in&action avec des jets sub-ou-supersoniques refroidissant une paroi. En 
plus des propriitCs moyennes et fluctuantes de l’kcoulement, des fluctuations de l’indice de r&fraction du 
milieu et du retard optique de la propagation de la lumiere sont pridits. Des comparaisons avec des donntes 

expkrimentales montrent un bon accord. 
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DER EINFLUSS TURBULENTER WARMEUBERTRAGUNG AUF DIE FORTPFLANZUNG 
EINES 0PTIsCHEN STRAHLs IN UBERSCHALLRE~BUNGSGRENZSCHICI~TEN 

Z~~nfa~n~~ wird ein mathemati~h~ Model1 zur B~timmung der str~mungst~hnischen und 
optischen Eigenschaften von uberschallgrenzschichten beschrieben, die mit kiihlenden Unter- und 
flberschallwandstrahlen zusammenwirken. Das eingespritzte Medium und die Grenzschichten haben 
gleichen bzw. verschiedenen Druck. AuRer den Mittelwerten und den Anderungen der Eigenschaften des 
Striimungsfeldes werden such die jinderungen des mittleren Brechungsindex und der Nacheilung der 

opt&hen Wellen, die sich durch das Medium fortpflanzen, voraus~rechnet. Vergleiche mit experimentell 
ermittelten Werten zeigen eine gute obereinstimmung. 

BJIki5IHME TYPEYJIEHTHOI-0 IlEPEHOCA TEnJIA HA rIPOXOxaEHkiE CBETOBOI-0 
IIYYKA rlEPE3 CBEPX3BYKOBbIE IlOrPAHMqHbIE CflBElrOBbIE CJIOEl 

Aiuroralsln - &JemTaBJlt!Ha MaTeMaTHYecKaR MOAeJIb nna paweTa Typ6yneHTHbIX N OnTWYeCKHX 

Xa~KTep~CTHK C3CpX3Bj’KOBbtX nOrpaH~YH~X CnOCB, B3a~MORe~CTBy~~~X C no- W CBCpX3ByKOB~~~ 

npHCTeHHbiMH CTPY~IMH oxnamnammeii ~W~K~CTK. i’fHwtCKTHp)‘eMaX XFiAKOCTb K norpasusebre CJION 

HaXOLVlTCl HJIU IlpH OAWWBKOBOM, HJIlz Pi.iSHOM IlaBJIeHHH. KpoMe CpeAHHX Ii IlyJlbCauHOHHbIX CBOikTa 

norm Te4emifi paccqrtraHbl QylcTyamiH noKa3aTenr npenoMneHsa cpenbr IU W3MeHeHHe 0nTwecKHx 

XapaKTepwcraK ny’iKO8, npoxonrIu~x uepes CPA)‘. nonyqeH0 xopomee coBnaneHlie c IWiIepHMeHTaJlb- 


