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Abstract — A mathematical model is presented for predicting the turbulent and optical characteristics of
supersonic boundary layers interacting with sub- and supersonic cooling wall jets. The injectant and
boundary layers are of matched or unmatched pressures. In addition to the mean and fluctuating properties
of the flowfield, fluctuations of the medium index of refraction and retardation of optical beams propagating

through the medium are predicted. Comparisons with experimental data show good agreement.

NOMENCLATURE
specific heat at constant pressure;

¢r,» Cr; € Cy, constants in the turbulence

model;
total enthalpy;

kinetic energy of turbulence = $u,u,;
length scale;

molecular weight;

exponent, index of refraction;
1—n;

static pressure;

radial distance;

specific and universal gas constants;
time;

temperature;

streamwise velocity component ;
lateral velocity component ;
streamwise coordinate;

lateral distance.

Greek symbols

&,

s
2’7

P,

oy, O1, O, G, turbulent Prandtl/Schmidt numbers ;

dissipation rate of k;
viscosity ;
wavelength ;

density;

@, phase variation of optical beam;

w, dimensionless stream function.
Subscripts

eff, effective ;

Js jet;

max, maximum;

min, minimum;

s, splitter plate;

t, turbulent.

* Sponsored by Ballistic Missile Defense Advanced Tech-
nology Center under contract No. DASG60-78-C-0152.

Superscripts
,  time-averaged value;
Y fluctuating component ;
+, maximum instantaneous value;

—, minimum instantaneous value.

1. INTRODUCTION

ADVANCED hypersonic flight vehicles which utilize
window concepts protecting an optical or radar gui-
dance sensor are being investigated. In order to
provide cooling for optical windows, gaseous coolants
are being considered where cold gasisinjected through
awall slot tangentially into the vehicle boundary layer.

Sensor performance evaluation requires the under-
standing of the characteristics of the vehicle’s hot
hypersonic boundary layer over the window and its
interaction with the cold wall jet. The optical designer
requires detailed information on the flowfield mean
and fluctuating properties and the thermodynamic
state throughout the injectant, shear and boundary
layers. The optical properties of the layers and, hence,
the sensor’s optical performance can then be
evaluated.

The purpose of this paper is to present a model for
predicting the flowfield characteristics over optical
windows. The flow is considered turbulent, and the
turbulence structure is represented by rate equations
governing the kinetic energy of turbulence and its
dissipation rate. The mixing streams can be subsonic
or supersonic and of matched or unmatched pressures
(lateral variations in the pressure distribution can exist
due to imbedded shock waves). A conservation equa-
tion representing the mean square of the temperature
fluctuation is included in the model, which allowed the
calculation of the fluctuation of the index of refraction
and refraction of optical beams. The instantaneous
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temperature, index of refraction and beam phase
variation were extracted from an assumed shape of the
probability distribution function of the temperature
fluctuation. In the present analysis the instantaneous
temperature was assumed to fluctuate between a
mipimum and a maximum and spends no time in
between.

The governing flowfield conservation equations
were solved using a finite difference-marching pro-
cedure. The Semi-Implicit Method for Pressure-
Linked Equations technique was utilized in the present
study.

2. MATHEMATICAL ANALYSIS

The mathematical analysis presented here is based
on two main elements:

(i) The solution of the transport equations of heat,
mass and momentum in the turbulent compres-
sible flow fields under consideration. These
equations are listed in Section 2.1, and the
solution method is described in Section 2.3.

(ii) The mathematical model which describes the
interaction between the local turbulence quan-
tities like temperature fluctuation and the re-
fraction of an optical beam. This is discussed in
Section 2.2.

2.1. Equations of heat, mass and momentum transport

The flows considered in the present study are steady,
turbulent and two-dimensional plane or axisymmetric.
The independent variables are the distances along, and
perpendicular to, the predominant direction of flow.
The dependent variables of the time-mean motion are
the streamwise velocity, u; the lateral velocity, v; the
static pressure, p; and the stagnation enthalpy, H. The
conservation equations which govern the mean mo-
tion are:

2 1o
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The temperature and density are given by the
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relations:
T=[H —Hu® + %)~ kYC, {51
p= P/RT= RM/R,T 6
where compressibility effects are accounted for via
both P and T. In the above equations, n = 0 for two-
dimensional flow and n = | for axisymmetric flow.
The eddy viscosity gi.q, which appears in the above
set of equations is obtained from:
Hetr = ty + Hiam- (7}

The turbulent viscosity at each point in the flow is
obtained from:

pk‘
ut': C;z . - {83

The kinetic energy of turbulent & and its dissipation
rate ¢ are calculated from their respective conservation
equations, [1]:

ok Ok 12 (pa ,0k) '\
pu——+ pv— ——(—fr” . H“’(é;) - pe

Ox ar " or or
9
de N oe 1 (;chf ”61:}
u./.- Y_.'—‘A,—_._‘- Nr —
b ox o= or I /
e fouy pe’
+ 1k“t(é”’:) - Cy—. {10}

The length scale of turbulence is related to k and ¢ by :

ks;z
I=Cp—

(i)

The boundary conditions of the above conservation
equations are discussed for each of the flows con-
sidered in Section 3.

2.2. A mathematical model for the effect of local
temperature fluctuation on the propagation of an optical
beam

An optical beam experiences a phase variation
{retardation) as it propagates through a medium of
nonuniform density. In a turbulent flowfield which
experiences local density fluctuation {due to the local
temporal fluctuation of the temperature, pressure or
species concentration), the local index of refraction of
the fluid consequently varies with time.

The present mathematical model predicts the fiuc-
tuation of the refractive index by relating the in-
stantaneous value of that index to the instantaneous
value of the temperature. This is accomplished as
follows:

(i) The local mean square temperature fluctvation
(‘5:’—2_) is obtained from the solution of its conservation
equation [2].

aT? aT* 19 et eT
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where Cr, and Cr, are empirical constants and ¢ is
the Prandtl number of 72

(ii) The instantaneous temperature is assumed to
follow a rectangular wave with time. This means that
the probability density function of the temperature
consists of only two delta functions. In general, the
magnitudes of these functions are not equal. To allow
for the physical realism to be incorporated in this
assumption the following bounds on T(t) are in-

troduced to insure that T(¢) never exceeds T,,, or
drops below T,,;, (as depicted in Fig. 1).
Case A (Fig. 1a)
(Taax = T) > T? and (T Tpy) > T?
(13a)
x=05 (13b)
T =T+ T? T =T- T2 13c)
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Case B (Fig. 1b)

JT?> (T= Tuir) (14a)
T~ =Ty, (14b)
T* =T+ T?(T-T") (14c)
a=(T= T T+ -T"). (14d)
Case C Fig. 1¢)
JT?> (Toar— T) (15a)
T+ =T,,, (15b)
. T2
_ (T*-T)

The value of « at each point in the flow is determined
from one of the equations (13b), (14d) and (15d)
depending on the magnitude of the temperature
fluctuation given by equations (13a), (14a) and (15a).

In all these three cases the time mean density g is
calculated from:

S e, PM[a (1-aw)
p=ap” +(1 a)p—R—[T++ = |

0
(16a)

and the mean-square of the density fluctuation is given
by

pr=(p* =P —p") (16b)

More realistic probability density functions
can be readily incorporated into the above model
when detailed experimental data for the tempera-
ture fluctuation in turbulent shear flows become
available.

(iii) The instantaneous values of the refractive index,
n, is calculated from the empirical relation [3]:

776 p [ ) 0.00753

nity=1+ Q) 7

]x 0% (17)

where pis the pressure in mb, A is the wavelength in um
and T is the instantaneous temperature in K. Equation
(17) shows that nis inversely proportional to T. It then
follows that the maximum value of n,n*, will cor-
respond to the minimum value of T, T~, and vice
versa. The quantity 7 is obtained from 7 = an™ +
1-an".

A quantity of practical interest is the phase variation
of an optical beam which propagates through a
gaseous medium of variable (in space and time) index
of refraction n. The instantaneous phase variation
#(t)[2n/2] can be calculated from the optical path
length ¢(t) as follows [4]:

&(t) = [ [n(¢) — 1]ds, (18)

where s is the optical path and (27/1) is the wavenum-
ber in vacuum.
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According to equation {(18), the maximum instan-
taneous value ¢ is proportional to n™, and the
minimum value ¢~ is proportional to n”. The time-
mean value of the phase variation ¢ is obtained from:

¢ = ¢(n) (19)
The root-mean-square value of ¢ is given by

J¢T=J o — g — ¢ (20)

2.3. The solution procedure

A finite difference procedure of the marching (from
upstream to downstream) integration type is used to
solve the set of conservation equations (1)-(4), (9), (10)
and (12). This procedure is described in detail in [5]
and will be only briefly outlined in this section. The
governing set of differential equations is first transfor-
med into a stream function plane (x,w) using a Von
Mieses type transformation. The finite difference grid
adopted is similar to that of [5].

The SIMPLE (Semi-Implicit Method for Pressure-
Linked Equations) algorithm [5] is used to link the
streamwise and lateral momentum equations with the
continuity equation so as to obtain a pressure field.
This linkage is necessary in supersonic or transonic
flows where the assumption of uniform pressure in the
lateral direction is invalid.

3. RESULTS AND DISCUSSION

This section presents the predicted results and
compares them, whenever possible, with existing expe-
rimental data or results of other numerical procedures.
Four flows are considered here. These are:

(i) An axisymmetric underexpanded jet issuing in
a confined supersonic flow;
{ii)Unmatched-pressure supersonic injection from
a 2-D wall-slot into a supersonic free stream;
(iti)Matched-pressure supersonic injection from a 2-
D wall-siot into a supersonic free stream;
(iv)Matched-pressure subsonic injection from a 2-D
wall-slot into a supersonic free stream.

The third and fourth flows provide the only avail-
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able experimental data to validate the predictions of
the phase variation of an optical beam. Testing was
performed at AF-FDL Mach-3 wind tunnel [6], where
both optical (holographic interferometry) and probe
{hot wire anemometry and Pitot and static pressure
probes) measurements were obtained.

3.1, Computational details

The conservation equations contain empirical con-
stants to which values must be assigned. The values of
these constants were inferred by comparisons with
experimental data of simple flow configurations [7].
Presented in Table 1 are the values of these constants
used in the computations. The finite-difference grid
employed in the present computation consists of 50
cells in the y-direction at any given streamwise station.

Table 1. Values of empirical constants

Dependent

variable Constant Value

H Ty 09
k Tk 1.0

o a, 1.09

, 1.43

o C, 192
T or 0.7
Ty, 28
Cy, 14

1, C, 0.09

0.164

The optimum size of the forward step is determined by
the solution procedure at each new step to eliminate
any numerical instability and to ensure economy. The
computations were performed on a CDC-7600.
The core storage required during execution is 103K
(octal) and the CPU time for one step is 0.006s.

3.2. Axisymmetric jet issuing in a confined supersonic

flow

3.2.1. Flow description. The flow configuration is
shown in Fig. 2, and the conditions at the exit plane are
summarized in Table 2.

(L[]S

STREAM B

STREAM &

X % - =
Inlet

Plane

F16. 2. Configuration of the two coaxial supersonic jets.
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Table 2. Flow conditions at the exit plane of confined axisymmetric jet and 2-D wall jet
Axisymmetric confined jet 2-D wall jet
Stream A Stream B Stream A Stream B
Fluid Air Air Air Air
u (ms™1) 13300 2625.0 490.7 691.0
v (ms™ ) 00 00 0.0 00
M 20 3.38 1.98 4.19
p(I0°Nm™?) 1.0 0.5 2.5 10
ry (m) 0001 000376 0.0135 001986
T(K) 1100.0 1500.0 180.6 79.96
This flow was predicted by Kurkov [8], using a finite 5.00
difference procedure. He treated the flow as inviscid .
and the stream B fluid was hydrogen. In this case the 7
fluid is air and the flow is treated as laminar ; otherwise, =7 *® T ~ © finiteditference
the inlet conditions are identical to that of Kurkov. z —~— Present Predictions
3.2.2. Boundary conditions. The present marching- &
integration procedure requires the specification of the £ ** +
boundary conditions along the axis and the confining § o
wall. The gradients in the r-direction of all the 3
dependent variables vanish at the axis. At the wall, the 2 *% ]
no-slip condition is enforced. g
3.2.3. Results. Figure 3 shows the predicted pressure &
distribution along the axis of symmetry, together with oo
that calculated by Kurkov [8]. The main features are 1 0 (O - 0,376
well predicted : the locations of the expansion wave (at ¢ '
x/r; = 3) and the reflection of the shock (at x/r; ~ 18). o001 6*00 - fm = P Ta——

The predicted value of the maximum pressures are in
very good agreement. The value of the minimum
pressure at x/r; = 3 is overpredicted by approximately
67%. The grid used here includes 50 cells in the radial
direction. A finer grid would probably improve the
predictions at the pressure dip. In addition, plug
profiles were assumed for both streams at the inlet
plane.

3.3. Unmatched-pressure, turbulent, supersonic injection
from a 2-D wall-slot into a supersonic free stream

3.3.1. Flow description. Figure 4 shows a schematic
of the flow considered, and Table 2 summarizes the
conditions at the exit plane of the slot. A supersonic
wall jet issues into a lower pressure, faster moving
stream. The conditions of this flow are those of the
experiment of Schetz et al. [9].

FREE STREAM B

SPLITTER PLATE

DIMENSIONLESS STREAMWISE DISTANCE

FiG. 3. Pressure distribution along the centerline of the
coaxial jets.

3.3.2. Boundary conditions. Near the wall, turbulent
wall functions [10] are used to calculate the shear
stress, the kinetic energy of turbulence and its dissi-
pation rate. At the edge of the supersonic free stream
(i.e. at the last finite-difference cell in the free stream)
the assumption of the simple wave is employed [5] to
calculate u, v, p there.

3.3.3. Results. Figure 5 displays a comparison be-
tween the predicted and measured [9] pressure distri-
bution along the wall. The agreement is good except
that the trough of the pressure is about 209 higher
than the measured one. This is the location of the
interaction of the expansion wave with the wall.

DIVIDING

¥
[ JET STREAM A
x

WALL

STREAM

WALL TEMP 2977

F1G. 4. Wall-slot jet injected into free stream.
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.00 } —} — —
0.00 16 4.00 6.00 8.60 fann

DIMENSIONLESS STREAMWISE DISTANCF
FiG. 5. Pressure distribution along the wall.

It should be noted that the present predicted
pressure distribution is in better agreement with the
data than those of [11]. This is due to the prescribed
profiles used here of «, p, T, p at the exit of the slot
which take an account of the boundary layers on both
the slot walls and the splitter plate. Reference [11]
assumed plug profiles. In the present study 1/7th
power law profiles were used.
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3.4. Matched-pressure supersonic injection from a 2-D
wall-slot into a supersonic free stream

3.4.1. Flow description. The flow configuration of this
case is identical to that of the unmatched-pressure case
(Fig. 4). The conditions at the exit plane of the slot are
given in Table 3. The blowing rate is about
0.775kgm~'s~!. The slot height y, is 0.0064 m. The
wall temperature is 274 K.

34.2. Boundary conditions. The boundary con-
ditions here are the same as in the unmatched pressure
case (Section 3.3).

3.4.3. Results. Figures 6 to 11 show a comparison
between the predicted and measured flow properties at
the streamwise stations of x/y, = 4.33, 8.03 which will
be referred to hereafter as Stations I and I,
respectively.

34.4. Time-mean velocity. The profiles of the
time-mean velocity are displayed in Fig. 6. The
predictions and measurements are in good agreement
at the two stations. The growth of the shear layer,
indicated by the vanishing of the dip in the velocity
profile at y/y, = 1.1, is well predicted. The velocity in
the inner region {y/y, < 0.9) is overpredicted by about
6%; this discrepancy is within the limits of the
experimental accuracy.

3.4.5. Mach number. Figure 7 shows the distributions

Table 3. Conditions at the exit plane of the slot for the supersonic and subsonic

injection cases

Supersonic injection

Subsonic injection

Stream A Stream B Stream A Stream B

Air Air Air

Fluid Air
u{ms™4) 4550 5700 2020 470.0
v(ms™ 1Y) 0.0 0.0 0.0 6.0
M 1.66 279 0.622 2.79
p(10°Nm™?%) 0.145 0.145 0.145 0.145
T (K) 180.0 100.0 2530 100.0
1.0 -+
£ N
E
& SUPERSONIC {NJECTION
%’: EXPT. PREDICTIONS */7s
g s — am
2 o —-——— 803
§ Upag = 270 m/sec
24
} t 4 t + -+
.25 5 .75 i 1.25 15

OIMENSIONLESS CROSS STREAM DISTANCE, )’;"j};

Fi1G. 6. Lateral distribution of streamwise time-mean velocity.
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SUPERSONIC INJECTION
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r-y —
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EXPT. PREDICTIONS */Ys
4.33

8.03

o
g
£
S 1.
5
g
=
1.
5T
c A e - | - i 'l
L T L] 1 L T
.25 5 75 1. 1.25 1.5

DIMENSIONLESS CROSS STREAM DISTANCE, y/y

Fi1G. 7. Lateral distribution of streamwise time—mean Mach number.

of the Mach number in the radial direction at the two
stations. The agreement is good between the pre-
dictions and experiment in the shear layer and in the
outer flow. Again, the Mach number is overpredicted
by about 6% in the inner region.

3.4.6. Time—mean temperature. Figure 8 depicts the
two profiles of the time—mean temperature. In contrast
with the velocity profiles, the temperature profiles are
well-predicted in the inner region (up to y/y, = 0.9).In
the outer region, a discrepancy of about 109/ exists
between the measurements and the predictions. This

underprediction of the temperature may be caused by
the high value of the constant turbulent Prandtl
number used (64 = 0.9) in the solution procedure.
Both the predictions and experiment show a slight
increase in temperature with downstream distance for
y/ys > 1.25.

3.4.7. Time—mean density. Figure 9 shows the pro-
files of the time—mean density. The agreement between
the predictions and measurement at the station of x/y,
= 8.02 is good and is fair for Station I. The underpre-
dicted density at that station in the outer region

SUPERSONIC INJECTION

1.0
*/Ys  EXPT. PREDICTIONS
4.33 s —

m 8.03 o -—-
-
o~ a
D—‘ TY‘E‘f = 274°K
w
S S D,
E
<t
o
2
o
&
&
{723
[Ze3
[¥e]
<
E
S a4t
g ]
z
=
=

.2T

: + b : + +
.25 5 .75 1. 1.25 1.5

H.M.T. 23/9—E

DIMENSIONLESS CROSS STREAM DISTANCE, )//y5

FiG. 8. Lateral distribution of time-mean temperature.
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F16. 9. Lateral distribution of mean density.

(v/ys > 1) suggests inaccuracies in the experimental
measurements. This is because the temperature was
underpredicted in that region (Fig. 8) and, con-
sequently, the equation of state for a constant pressure
should overestimate the predicted density. (In other
words, we cannot underpredict both T and p.) No
measurements of the density are available for the inner
region. Both the predictions and experiment show a
slight drop in density with downstream distance for
y/ys > 1.25.

3.4.8. The density fluctuation. The profiles of the
density fluctuation are plotted in Fig. 10. Qualitatively,
the predictions and the measurements exhibit, as
expected, a peak in density fluctuations at the location
(¥/ys = 1.25) of maximum density gradient (Fig. 9).
The predictions are in better agreement with the hot-
wire measurements at Station II than at Station L
However, the data obtained from the optical measure-
ments agree better with the predictions.

3.4.9. Time—mean index of refraction (n). Figure 11
shows a comparison between the opticaily measured
and predicted profiles of the index of refraction A
where, 1 = n — 1. Asindicated by equation (17), n(t) is
inversely proportional to T(t) and, consequently, the
accuracy of the prediction of 71 depends on how well T
and T are predicted. As indicated in Fig. 11 the
agreement between the prediction and experiment is
good.

3.4.10. The optical beam phase variation (¢). Equa-
tions (18) and (19) were used to predict ¢*, ¢~ and ¢.
Table 4 contains the predicted values at the two
Stations I and I1, together with the experimental values
of |/ p'?/4 where 2 is the wavelength (4 = 0.69 um).Itis
seen that the time-mean value and the fluctuation of
the phase retardation increase with distance from the
slot exit. This is mainly due to the higher density {or
temperature) fluctuations at the downstream station,
Also, the predictions and experiment are in good

o
2
- SUPERSONIC INJECTION
i
; EAPT.
Q@ L i
> 15 -+ seotctions 7 MOTMIRE geryce
= — } s A
;; ——— o
a
o« a
E 0.0 <+ + ).

A

DIMENSTONLESS CROSS STREAM DISTANCE, y/ys

1

.25

FiG. 10. Lateral distribution of density fluctuation.
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Fi1G. 11. Lateral distribution of mean index of refraction (optical data).

Table 4. Comparison between predictions and data of beam phase variation for supersonic and subsonic injection

cases
,/ a’i/,l

~ Pred.

Case Station X[y, 107 x ¢* 107 x ¢~ 107 x¢ Exp. (equation 17)

Supersonic 1 433 6.67 6.26 6.46 0.02 003

Supersonic II 8.03 6.79 6.22 6.51 0.043 0.041
Subsonic I 433 505 4.56 481 0.094 0.053
Subsonic I 8.03 5.17 4.35 4.76 0.039 0.059

agreement, especially at Station II, which is due to
better agreement between predictions and measure-

ments for the quantities 7 and \/p"

3.5. Matched pressure subsonic injection froma 2-D wall
slot into a supersonic stream

3.5.1. Flow description. The flow configuration is
identical to that of the supersonic injection case (Fig.
4). The conditions at the exit plane of the slot are given
in Table 3. The blowing rate for this case is
0.247kgm™ st

3.5.2. Boundary conditions. The boundary con-
ditions for this case are the same as in the unmatched
pressure case (Section 3.3).

3.5.3. Results. The predicted results at the two
streamwise stations' (x/y, = 4.33,8.03) are presented in
Figs. 12 to 16. The experimental data are plotted in
Figs. 14-16. Because of the unavailability of hot wire
and pressure probes experimental data, the predictions
will be only qualitatively discussed, except for the
density and the refractive index which were obtained
from optical measurements.

3.5.4. Time—mean velocity. Figure 12 shows the
profiles of the time~mean velocity at the two stations.
The growth of the shear layer is indicated by the

decreasing velocity gradient. It is seen that the width of
the shear layer at x/y, = 8.03 is almost three times the
width of the shear layer in the supersonic injection case
(Fig. 6).

3.5.5. The time—mean temperature. Figure 13 dis-
plays the predicted profiles of the time-mean tempera-
ture at the two stations. It is interesting to compare the
rate of temperature change with streamwise distance in
the shear layer in the supersonic and subsonic injection
cases. Figures 8 and 13 show that in the former case the
temperature almost remains constant between the two
stations, whereas in the latter case a drop of about 7%,
is observed for 0.6 < y/y, < 1.25. This is attributed to
the faster rate of growth of the shear layer in the
subsonic case (Fig. 12), which is caused by the
turbulent mixing. A larger rate of turbulent mixing
would increase the rate of entrainment of the free
stream fluid into the shear layer and, thereby, enhances
the rate of temperature drop in that region and hence a
rise in density.

In the wall region, however, the supersonic injection
produces larger temperature and velocity gradients
than in the subsonic injection case. Consequently, the
turbulent boundary layer grows faster in the former
than in the latter case. Hence, the temperature rise in
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the wall region (between the two stations) is more in
the supersonic case than in the subsonic case.

3.5.6. The time—mean density and density fluctuation.
Figures 14 and 15 show the profiles of the density and
its fluctuation intensity. The predicted density be-
havior is consistent with the predicted temperature
(Fig. 13); a drop of the temperature with downstream
distance in a uniform pressure field causes a density
rise particularly away from the wall. The experimental
data, however, shows a drop in density (i.e. a rise in
temperature) with streamwise distance for y/y, > 1.0.
This trend contradicts the predictions. This may be
due to the large value of g, (0.9) used in the
computation.

75
CROSS STREAM DISTANCE, y/y,
of streamwise mean velocity.

Figure 15 shows a significant increase in the pre-
dicted density fluctuations with streamwise distance.
This is due to an order of magnitude increase in the
effective viscosity in the shear layer. Although thereisa
fair agreement between predictions and experiment at
Station 1, there are insufficient experimental data
points to justify a meaningful comparison. The expe-
rimental data, however, exhibits a decrease in density
and a decay of its fluctuation intensity with distance. A
plausible cause of this discrepancy is that the pre-
scribed profiles of the flow properties at the exit plane
of the slot are not consistent with the actual flow
conditions. To resolve this issue, more detailed expe-
rimental data are required.
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3.5.7. The time-mean index of refraction. Figure 16
displays the profiles of the time-mean index of re-
fraction at the two stations. Since the index of re-
fraction is a function of the local density, the discrep-
ancy (explained earlier) between the measured and
predicted density is reflected here again in the disagree-
ment between the measured and predicted index of
refraction.

3.5.8. The fluctuation in the phase variation. Table 4
contains the predicted and measured values of ,/ ¢%/4
and of the predicted ¢*, ¢~, and ¢ (2 = 0.69 um).
Since the phase variation ¢ is a function of n, the
discrepancy discussed earlier appears here also: the

data indicate a drop in the value ./ ¢'%, and the

predictions show an increase.

4. SUMMARY AND CONCLUSIONS

1. This manuscript has described a numerical me-
thod for predicting two-dimensional viscous compres-
sible turbulent flows with values of Mach numbers
ranging from 0.62 to 4.19.

2. A mathematical model is provided for calculating
the influence of the turbulent heat transfer in boundary
or shear layers on the propagation of optical beams
across these layers.

3. Good agreement is achieved between the pre-
dictions and the available experimental data except for
the subsonic injection case where the agreement is fair.
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FIG. 16. Lateral distribution of index of refraction (optical data).

4. Detailed experimental data at various flow con-
ditions are needed (different pressure ratios) to extend
the validity of the procedure.
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LES EFFETS DU TRANSFERT THERMIQUE TURBULENT SUR LA
PROPAGATION D’UN RAYON OPTIQUE A TRAVERS DES COUCHES
LIMITES SUPERSONIQUES

Résumé— Un modéle mathématique est présenté pour prédire les caractéristiques turbulentes et optiques des

couches limites supersoniques en intéraction avec des jets sub-ou-supersoniques refroidissant une paroi. En

plus des propriétés moyennes et fluctuantes de écoulement, des fluctuations de I'indice de réfraction du

milieu et du retard optique de la propagation de la lumiére sont prédits. Des comparaisons avec des données
expérimentales montrent un bon accord.
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DER EINFLUSS TURBULENTER WARMEUBERTRAGUNG AUF DIE FORTPFLANZUNG
EINES OPTISCHEN STRAHLS IN UBERSCHALLREIBUNGSGRENZSCHICHTEN

Zusammenfassung—Es wird ein mathematisches Modell zur Bestimmung der stromungstechnischen und

optischen Eigenschaften von Uberschallgrenzschichten beschrieben, die mit kiihlenden Unter- und

Uberschallwandstrahlen zusammenwirken. Das eingespritzte Medium und die Grenzschichten haben

gleichen bzw. verschiedenen Druck. AuBer den Mittelwerten und den Anderungen der Eigenschaften des

Stromungsfeldes werden auch die Anderungen des mittleren Brechungsindex und der Nacheilung der

optischen Wellen, die sich durch das Medium fortpflanzen, vorausberechnet. Vergleiche mit experimentell
ermittelten Werten zeigen eine gute Ubereinstimmung.

BJIHUAHHUE TYPBVYJIEHTHOI'O NEPEHOCA TEIJIA HA NMPOXOXIEHHWE CBETOBOI'O
[TYYKA YEPE3 CBEPX3BYKOBBIE INOrPAHUYHBIE CABHMI'OBBIE CJIOH

Annotamns — [lpeacTaBieHa MaTeMaTHYECKas MOJeNb [ pacvera TypOYNeHTHBIX M ONTHYECKHX

XaPaKTEPHCTHK CBEPX3BYKOBBIX IIOTPDAHHMYHBIX CJIOEB, B3aHMOICHCTBYIOUMX C 10- H CBEPX3BYKOBBIMH

MPHCTEHHBIMHE CTPYAMH OXjaxjatomell kuaxocTH. MHkekTnpyemas XHIKOCTb H NOTPaHHHHbIE CJIOH

HAXOAATCS WM NPH OAMHAKOBOM, WIR pa3sHOM HaBleHHn. KpoMe cpeHHX W nyJbCallHOHHBIX CBOHCTB

NOJIA TEYEHHA PacCUMTANbI GIYKTYALMH NOKa3aTells NPEIOMICHHS CPEefbl M H3MEHEHHE ONTHYECKHX

XaPaKTEPHCTHK MYYKOB, NIPOXOMALIEX yepes cpeny. [ToayueHo Xopoliee COBIAICHHE C JKCIIEPHMEHTA b~
HBIMH JaHHBIMH.
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